
1. INTRODUCTION
This contribution is an extension of a conference
paper [1]. Motivation was an issue that my former stu-
dent Kinga Zemła in her research of the master thesis.
She compared results of velocity diagrams obtained
from two numerical algorithms of accelerogram inte-
gration and they were different. The problem was
related to the baseline correction described in the
review paper [2] and cited in its source research
papers.
Analysis of paraseismic shocks in mining activities
areas is a difficult engineering task, and the reliability
of the results is very important.
Usually, numerical integration algorithms are used to
evaluate velocity and displacement functions [3, 4].
This paper presents an analytical approach to integra-
tion that is possible to apply thanks to the
Mathematica system [5]. The procedure obtained is
straightforward and surprisingly effective. It is pre-

sented as an alternative to numerical methods.
Moreover, the approach may be applied to integration
of the equation of motion, and the crucial steps of this
algorithm are also presented. The numerical approach
to this problem is described in many books, for exam-
ple [6, 7, 8].

2. SAMPLE ACCELEROGRAM
Figure 1 shows an accelerogram from the research
mentioned in the Introduction, as an example of the
method used. The entire recorded signal lasted 5 sec-
onds, but the largest acceleration amplitudes were
recorded in the subinterval shown on the right side of
the figure. The set of recorded data within this time
period consists of 327680 elements. Thus, the time dis-
tance between them is 0.000152588 s. The analysed
signal is highly oscillating, and we cannot say that mea-
surement points are very dense; see Fig. 2.
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Numerical integration of this signal in Mathematica
is possible, but the only effective algorithm with the
use of a built-in function requires the division of this
time interval into 327679 subintervals. Computation
took an unreasonably long time.

3. INTERPOLATION AND INTEGRA-
TION
In the Mathematica system, we can interpolate a set
of measurement points with a function. The argu-
ment of this function is the order of the interpolation
function. This corresponds roughly to the degree of
polynomial fit between the measurement points of
the set ts.

The interpolation with interpolation order equal to 6
is presented in Fig. 2. From this moment we can deal
with the interpolation function almost like with the
analytical one. This “almost” and the fact that it is
based on numerical data explains the word “semi-
analytical” in this title of the article.
The function of acceleration is highly oscillating. As
has already been mentioned, numerical integration
fails. It turns out that the analytical integration of this
function is very fast.
We compute the velocity (speed) function as an inte-
gral:
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Figure 1.
Accelerogram in the entire measurement range and in the subrange of high accelerations

Figure 2.
Interpolation of measurement data in the range of extremal accelerations
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Figure 3 shows that the highest velocity values are
reached around the 2 s of measurement, when the
vibrations seem to stop. The speed value is about three
times higher than at the moment of the greatest accel-
erations. Further vibrations with small accelerations
cause the speed to drop to zero in the fifth second.
By integrating the semi-analytical velocity function,
we obtain the displacement function.

The graphs shown in Fig. 4 may suggest that the dis-
placement function is quite smooth. However, a
“microscopic” close-up (Fig. 5) to the time interval as
in Fig. 2 shows the actual course of the function after
successive integrations.
We can check the quality of integration by differenti-
ation. So, if we differentiate the velocity function and
subtract the acceleration function from it,
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Figure 5.
Velocity and displacement diagrams of displacements in the range as in Fig. 2

Figure 3.
Speed chart in the entire measurement range and in the subrange of high accelerations

Figure 4.
Displacement graph in the entire measurement range and in the subrange of high accelerations
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we get what can be seen in Fig. 6, that the error is
negligible since even at points where acceleration
is equal to 3000 mm/s2 the error is not bigger than
15 mm/s2 (0.5%). When we integrate the error func-
tion and divide it by an integral of an absolute accel-
eration value, we obtain an average error that is
equal to 0.2%.

4. INTEGRATION OF EQUATIONS OF
MOTION
The above method can be used to integrate equations
of motion [3, 4]. We will show it in the example of a
dynamical system with one degree of freedom excited
by the analysed acceleration function.
Mathematica can provide a general solution to this
problem using a function to analytically solve differ-
ential equations.

The result of such a generally formulated task is
given by the program in the following form.

This expression – as beings endowed with real intelli-
gence, not artificial, still superior to machines – we
can simplify to the form:

which in traditional notation can be denoted as:

This solution satisfies the initial conditions that, at
time t = 0, both the displacement and the velocity
are equal to zero. This is done taking into account
the assumption that in the launching moment of
motion registration the system do not move. It
makes it possible to omit the discussion on constants
of integration.
It is necessary to explain why definite integrals have
been replaced by indefinite ones. It is possible since
the definite integral is equal to the difference of anti-
derivatives of the integral at both ends of the integra-
tion interval and the antiderivative of the interpolat-
ed function at the moment of time equal to 0 is equal
to 0, too.
In this case, the interpolation procedure requires an
additional step. The integrands in the above formula
are a mixture of analytical functions and interpolated
acceleration.
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Figure 6.
Absolute error of interpolation



SEMI-ANALYTICAL INTEGRATION OF THE ACCELEROGRAM AND EQUATIONS OF MOTION OF A SYSTEM SUBJECTED TO A PARASEISMIC SHOCK

Such mixtures cannot be integrated analytically.
Let us set the cyclic frequency and dumping parame-
ter equal to

To make it possible to integrate these functions ana-
lytically, we have to reinterpolate them:

Now, the calculations are straightforward. Input in
the form.

produces the following output:

This result is presented in Fig. 7
It could be added that the general solution of a dif-
ferential equation of motion can be presented in the
equivalent form:

in traditional notation:
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Figure 7.
Result of integration of the equation of motion

c
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This form seems to be more suitable when c < �. In
this case, all the terms in the expression above are
real numbers. In the previous case, they are complex
numbers, but the final result is a real function. It is
not a problem for Mathematica to deal with such
functions.
Both forms of equations exactly satisfy the differen-
tial equation and initial conditions. However, the
solution was compared with numerical approaches.
The numerical solution is less precise and requires
significant dense steps, so the computation time is
comparable. This comparison will be shown in the
following contributions.
The numerical problem may occur with both formu-
las mentioned above if we are close to critical dump-
ing c � �. In the case of critical dumping c = � we
have the following solution:

in traditional notation:

Numerical problems connected with this special case
can be overridden with higher precision of computa-
tion, since Mathematica can do calculations with an
arbitrary precision.

5. CONCLUSIONS
The presented approach can be an alternative and
verification tool for numerical algorithms embedded
in accelerometer and system software for numerical
calculations in the near future. This statement
requires further comparison with contemporary pro-
fessional numerical algorithms. Such comparisons
will be made in further papers. The high speed of
semi-analytical calculations and the verifiability of
the results speak to their use in the analysis of para-
seismic shocks in mining areas.
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